

doForms™

Web Services API

Updated November 20, 2013

A Product of doForms Inc.

2 | T a b l e o f C o n t e n t s

Table of Contents

Legal Notice ...2

Contact Support ...2

Overview ...4

Mobile Data Collection App .. 4

doForms Website .. 5

doForms Dispatch ... 5

Security for Paid Accounts .. 6

SOAP API ...7

Managing Services .. 7

Limits on Use ... 8

Connecting to a Web Service .. 8

Basic Methods for Reading Data ... 9

Downloading Media Files .. 9

Sample Code ... 10

API Support Forums .. 10

Important Notes .. 10

API Methods .. 11

Current API Methods .. 11

Depreciated Methods ... 22

Custom Development Services ... 23

Legal Notice

Your use of doForms, including online and offline components, is governed by the Terms of Use as
specified at http://www.doforms.com/terms-of-use.

Copyright © 2011-2013 doForms Inc.

All Rights Reserved.

Contact Support

http://www.doforms.com/terms-of-use

N o t i c e s | 3

Email: support@doforms.com

Website: www.doforms.com/support

Please sign up to follow http://community.doforms.com/doforms/topics/using_web_services to be
alerted to recent development to doForms web services.

mailto:support@doforms.com
http://www.doforms.com/support
http://community.doforms.com/doforms/topics/using_web_services

4 | O v e r v i e w

Overview

doForms provides “smart-forms” for Android-powered smartphones and tablets - everything you need
in a turn-key, all-in-one, reliable, secure, and fully hosted mobile data collection solution. Supported
data types include:

 Section labels
 Textual data
 Numeric data
 Calculations
 Date:time
 Single choice answers
 Multiple choice answers
 Category scores
 Lookup tables
 Action buttons
 Barcode scanning
 NFC scanning
 Signatures
 Sketches
 Pictures
 Video recording
 Audio notes
 GPS locations
 Approvals
 Email reports

These data entry widgets can be displayed individually, or formatted using the following “containers”:

 Page
 Table
 Grid
 Questionnaire
 Repeatable Section

Mobile Data Collection App

doForms mobile data collection software works with a wide selection of popular iOS and Android
smartphones and tablets. Unlike all browser-based forms, our mobile data collection software, or
"mobile forms app", enables your workers to operate in both connected and disconnected
environments. This is critical for workers in rural areas or urban settings with cellular dead spots.

Imagine using your mobile data collection software to instantly take a picture, then sketch on top of it to
illustrate something of interest; or to scan the barcodes of materials being delivered to a job site.
Imagine recording audio notes and video clips and embedding them right in your electronic mobile data
collection forms; or using the GPS to precisely record a location. Think about the increased speed and

O v e r v i e w | 5

accuracy of reporting.

doForms provides a flexible, fast, and easy solution to deploying mobile data collection forms to your
workers - anywhere in the world. And the mobile forms on your workers' smartphone and tablet
devices are automatically synchronized and remotely kept up-to-date. Control who gets which mobile
data collection forms. Remotely control who can view or change the incoming data. doForms
centralizes this control on a website dashboard to save time and money.
For paid accounts, your doForms mobile app can be branded using your company name and graphics.

doForms Website

doForms provides a fully integrated website for aggregating, sorting, querying, viewing and managing
mobile forms data being collected by your workers. If GPS coordinates are included, your mobile forms
data can be viewed on top of an interactive map. The website keeps track of which workers collected
which mobile forms data. The website makes it easy to export mobile forms data to your other business
applications, and to integrate your mobile forms data in real time with other IT systems by using web
services.

Use our off-the-shelf mobile data collection forms library. Or create your own mobile forms using the
most powerful, yet easy-to-use form creation software available. Our form builder provides simple and
intuitive user interfaces for building mobile forms. You don't need to be a specialist to use our form
creation software. You just need to have an understanding of what you want your mobile data collection
software to do. With doForms, anyone with office software experience can create their own mobile data
collection forms for smartphones and tablets. With doForms, there is no need for software
programmers to build your mobile forms or IT support staff to deploy them.

doForms allows easy exporting of mobile forms information to other business applications such as
Microsoft Excel, Open Office, and Google Docs. Export options are also provided for CSV, HTML and PDF
file formats. Additionally, doForms also provides for direct integration of your mobile forms with CRM,
database and GIS systems, such as Salesforce.com, Oracle, SAP, and ArcGIS, through the use of industry-
standard SOAP web services. These web services can be set up and deployed in a matter of minutes with
no software programmers involved.

For paid accounts, your doForms website and mobile app can be branded using your company name and
graphics.

doForms Dispatch

doForms Dispatch provides powerful dispatch forms and work order forms functionality. These special
purpose forms contain important information to tell mobile workers where to go (dispatch) and what to
do when they get there (work order). As your mobile workers complete their assigned tasks, doForms let
them fill out data fields in the form, take pictures, capture GPS locations, and collect signatures. The
completed data records are then sent back to you.

In addition to sending and receiving forms from your workers, doForms Dispatch also tracks their
current and past GPS locations, and these locations are plotted on an interactive map in the Dispatch
tab. You can select which workers to view, as well as the time interval. The map also shows the locations

6 | O v e r v i e w

where forms were filled out.

Your doForms website account provides a specialized Dispatch tab where dispatch forms and work order
forms can be filled out, managed, scheduled and sent to your mobile workers. The data sent back from
your workers is also viewed in this tab, as well as the status of their assigned job. And your workers' past
and present locations are shown on a map in this tab.

Dispatch data can also be sent from your existing dispatch and work order system, and forwarded via
our Data Exchange Server to your doForms equipped mobile devices. Similarly, the competed forms can
be sent from the mobile devices, and forwarded to your existing dispatch and work order system. Our
Data Exchange Server makes this integration simple and quick.

Finally, Dispatch accounts provide the ability for mobile users to “Retrieve” previously sent data from
the website, work on it, then send it back to the website. Imagine a situation where you have one
mobile worker who fills out a form, and a different mobile worker who needs to approve the job record.
Or imagine a field medicine scenario where different specialists need to add information to a patient
record.

Security for Paid Accounts

The security of the doForms system is based on (i) data transmission encryption, and (ii) Google's App
Engine IT infrastructure security.

Data transmission between your mobile devices and the doForms website is encrypted using Secure
Socket Layers (SSL3). This protects your data while traveling over the airwaves or internet. Browsing of
data on your doForms website may also be encrypted using SSL/HTTPS. Please be sure to use the
encrypted SSL3 connection at https://mydoforms.appspot.com / followed by the name of your
doForms website account.

You can also have peace of mind knowing that your data and forms are hosted on top of Google's App
Engine IT infrastructure. Google App Engine has successfully undergone annual SAS 70 Type II audits
which have evolved into the SSAE 16 Type II attestation and its international counterpart, ISAE 3402
Type II. Google App Engine is one of the first major cloud providers to be certified for compliance to
these new audit standards.

Third party audits are only part of the security and compliance benefits of Google App Engine products.
Google protects our customers’ data by employing some of the foremost security experts, by executing
rigorous safety processes, and by implementing cutting-edge technology. These protections are
highlighted in the data center video tour. For more information visit the Google Apps Trust page.

Source: http://googleenterprise.blogspot.com/2011/08/security-first-google-apps-and-google.html

https://mydoforms.appspot.com/
http://en.wikipedia.org/wiki/Statement_on_Auditing_Standards_No._70:_Service_Organizations
http://www.ssae-16.com/
http://isae3402.com/
http://isae3402.com/
http://www.youtube.com/watch?v=1SCZzgfdTBo
http://www.google.com/apps/trust#utm_campaign=SecurityFirst&utm_source=en-na-us-entblog-SSAE16-08052011&utm_medium=blog

S O A P A P I | 7

SOAP API

IMPORTANT: Please sign up for http://community.doforms.com/doforms/topics/using_web_services
to be alerted to recent developments in doForms web services.

IMPORTANT: The Web Services tab is available to doForms users with Manage and Admin privileges
only. Web services are available for paid accounts only.

To access the doForms web services, go to the Accounts tab and click on Web Services. Web services
are used to expose the data in your doForms account for use with other IT systems.doForms Web
Services can be accessed using any program that supports SOAP web services (you MUST use SOAP in
your client programs).

doForms web services are organized on a per-form basis. When a form is added to the Web Services
tab, DoForms assigns a [WSID] and a [password] for accessing the form data. The form data served by
the web services is described using Web Service Descriptive Language (WSDL).

Managing Services

Add service – To add a new web service, select Add service in the Row Menu. You will be prompted to
first select a project, then select the form that you wish to publish. Then enter a password. The WS ID is
a system-generated value. Press Add when done. A new row will be added to the Web Services tab
containing the web service URL generated by the doForms system, [WSID], and the[Password] you
entered (the use of these parameters is explained below).

Delete service – You can delete the web service by clicking Delete service in the Row Menu. A message
will be displayed asking you to confirm that you wish to delete the web service. Press OK if you do.
Otherwise, press Cancel.

Turn on/off – Existing web services can be turned off or on by clicking Turn on/off in the Row Menu.

http://community.doforms.com/doforms/topics/using_web_services

8 | O v e r v i e w

Web services which are turned off will not be accessible.

Limits on Use

We monitor and restrict how many data records are read daily by each doForms web service WSID. All
use limits are on a “per day” basis. Each “day” starts and ends at 00:00 UTC.

Limits on Data Record Reads: The limit is currently set to 50 times the number of mobile units in your
account per day. So as an example, if you have 30 mobile units in your account, you can read
50X30=1500 records per day.

Limits on Lookup Table Uploads: The limit is currently set to 1,000,000 write operations per day. A
good rule of thumb is the number of write operations equals approximately 4 x number of records x
number of fields that are uploaded. So for 10,000 records with 10 fields you would expect
approximately 400,000 write ops.

Limits on Lookup Table Downloads: The limit is currently set to 1,000,000 read operations per day. A
good rule of thumb is the number of read operations equals approximately just the number of records
that are downloaded (i.e., read ops are independent of the number of fields). So for 10,000 records
with 10 fields you would expect approximately 10,000 write ops.

Note that during the 7 days immediately following the creation of a web service, we provide higher
limits than those above in order to permit adequate testing of your software. This is done on a WSID by
WSID basis. So if you need to extend this 7 days you can do so by deleting the doforms web service, and
creating a new one for the same project/form (this will generate a new WSID).

Customers requiring higher use limits should contact support@doforms.com. We reserve the right to
change these limits at any time with or without notice in order to maintain the performance and
reliability of your doForms website.

NOTICE: There are currently no use-limits on the BETA lookup table related web services. These use-
limits will be implemented when the production version of these web services is released and additional
charges may be applicable to these web services.

Connecting to a Web Service

doForms web services MUST be connected to using SOAP. There are known problems with connecting
to the web services via HTTP and we do not support this method.

Detailed instructions on how to connect with a SOAP web service are beyond the scope of this manual,
but well known to any IT professional experienced in SOAP. doForms Web Services strictly follow the
W3C SOAP Specification Version 1.2 (http://www.w3.org/TR/soap/). We recommend using a tool such
as soapUI (http://www.soapui.org/) for exploring and testing a doForms web service.

The WSDL file for a doForms web service looks something like the following, where the [WSID] and
[Password] are provided in the Web Services tab (see above). The current WSDL can be obtained at
http://www.mydoforms.com/wss?wsdl. The [URL] provide a quick view of the data in its XForms XML

mailto:support@doforms.com
http://www.w3.org/TR/soap/
http://www.soapui.org/
http://www.mydoforms.com/wss?wsdl

S O A P A P I | 9

format and can be used to verify that the web service is being used correctly.

Basic Methods for Reading Data

Most users of the doForms web services use them to retrieve data records submitted from mobile
devices so that these data records can be integrated into another information system. In most cases
this process centers around one method: “getUnReadData”. This method is used for reading data
records that have not been previously read by your client application. The “DataFormat” argument
determines if data is returned in CSV or XML format. The “NumberOfRec” determines how many
records are returned with each call. Null records values will be returned when there are no more data
records to read. We strongly recommend making this value less than 100 for reliability.

In the simplest case, this method is used with the “isAutoUpdate” argument equal to “1”. Doing so
automatically removes any record that is read with the getUnReadData from the unread data queue so
it will not be re-read with subsequent calls of this method. In other cases, you may want to have more
control over when a record is marked as read. For example, if performing integrity checks on each
returned record. In this case, use the getUnReadData method with the “isAutoUpdate” argument equal
to “0”. Then use the “markUnReadDataAsRead” method to manually mark successfully read records
from the unread record queue.

If you need more control over which records are read than described above, please consider using the
getRecordKeyByReceivedDateRange and getDataByRecordKey methods which will enable you to
identify and get specific records based on the date:time in UTC when a record was received by the
mydoForms website. Alternatively, use the getRecordKeyByDateRange method if you want to do this
based on the “Date_Created” which is the date:time that the record was created on the mobile
device(not recommended).

With all of the “get” methods above, you may also want to delete data records from the doForms
website after they have been read. In this case, use the “deleteDatabyRecordKey” method . Note
that even if the record is to be deleted, it must also be marked as “marked as read” to avoid an error if
using the getUnReadData method.

IMPORTANT NOTE: In doForms there is a distinction between a record that is newly submitted by a
mobile device to the doForms website and a previously submitted record that is edited on the doForms
website. The getUnReadData method reads both newly submitted records and edited records.

IMPORTANT NOTE: See the Limits on Use section above before implementing any of the methods
below.

Downloading Media Files

The output of the web services contains the html links for each media source file. With some coding,
you can create a program sending an http request via the html links to download the media source files
automatically.

10 | O v e r v i e w

Sample Code

Java - http://beta.mydoforms-hrd.appspot.com/support/doForms_WS_Java_Sample.zip
VB.Net - http://beta.mydoforms-hrd.appspot.com/support/doForms_WS_VBNet_Sample.zip
PHP - http://beta.mydoforms-hrd.appspot.com/support/doForms_WS_PHP_Sample.zip

API Support Forums

http://community.doforms.com/doforms/topics/using_web_services

Important Notes

Below are the most current recommended methods provided by the doForms web services API. Note
that in all cases the “[WS ID]” and “[Password]” refer to a specific doForms project/form web service.

The API methods described herein use two different ways of referencing specific records: Please be sure
to use to the correct reference when using a specific method:

RecordId – This is the same as the “Form_Record” field displayed in the View Data and Dispatch tabs
and included in exports.

RecordKey – This is an internal database reference that is more efficient than RecordID.

Also, some of the API methods described here use and/or return two different date:time stamps:

Date_Created – This is the date:time when a record is first saved as complete on a mobile device (or
on the website if it was first created there.)

Date_Recieved – This is the date:time when a record was first received by the website. Note that
this is the most reliable date:time for specifying “non-overlapping” record ranges.

All date/time values are returned in the UTC/GMT time zone. However you can use the Time Zone
parameter that is returned by the newest version of the getDataByRecordKey method to calculate the
local Date_Created.

http://beta.mydoforms-hrd.appspot.com/support/doForms_WS_Java_Sample.zip
http://beta.mydoforms-hrd.appspot.com/support/doForms_WS_VBNet_Sample.zip
http://beta.mydoforms-hrd.appspot.com/support/doForms_WS_PHP_Sample.zip

A P I M e t h o d s | 11

API Methods

Current API Methods

getWsIDList2: Return the list of active web service WSID's for an account

which matching the password

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getWsIDList2>

 <arg0_java_lang_String>[Account Name]</arg0_java_lang_String>

 <arg1_java_lang_String>[WS Password]</arg1_java_lang_String>

 <arg2_int>[ResponseFormat]</arg2_int>

 </ser:getWsIDList2>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [Account Name] is the Account name or Website name

- [WS Password] is the WS Password

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

getFormTemplate2: get the form structure in XML format

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getFormTemplate2>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 </ser:getFormTemplate2>

 </soapenv:Body>

</soapenv:Envelope>

checkValidWebservice: Check if a WS is valid or not

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:checkValidWebservice>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

</ser:checkValidWebservice>

 </soapenv:Body>

</soapenv:Envelope>

Return:

 true: the WS is valid

12 | A P I M e t h o d s

 false: the WS is invalid

getFormRecordCount: Get the total records for a specific form

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getFormRecordCount>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

</ser:getFormRecordCount>

 </soapenv:Body>

</soapenv:Envelope>

Return: number of records

getUnReadData: Just download records that have not been previously sent

included the new records. Note that this method is subject to the Use Limits

described above.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getUnReadData>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_int>[DataFormat]</arg2_int>

 <arg3_int>[NumberOfRec]</arg3_int>

 <arg4_int>[isAutoUpdate]</arg4_int>

 </ser:getUnReadData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [DataFormat]: 1=CSV, 2=XML

- [NumberOfRec]: the number of records to be downloaded. Due to the

existing limits from GAE, we recommend to just read less than 100

records for each call.

- [isAutoUpdate]: 1-the downloaded records will be automatically set

to “read” and will not be returned in next calls; 0-the downloaded

records are still kept as “unread”

- Note: If using isAutoUpdate=0, you should use the

markUnReadDataAsRead method to manually mark the records as read in

order to avoid service limitations on number of records read daily.

markUnReadDataAsRead: Mark the unread data as “read” to remove the

corresponding record from the getUnReadData call

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

A P I M e t h o d s | 13

 <soapenv:Header/>

 <soapenv:Body>

 <ser:markUnReadDataAsRead>

 <arg0_java_lang_String>[RecordKey]</arg0_java_lang_String>

 </ser:markUnReadDataAsRead>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [RecordKey]: The RecordKey which is extracted from the “@recordKey”

field returned getUnReadData method.

getRecordKeyByReceivedDateRange: Return a list of the RecordKeys in a given

received date range which is the date:time that the record is received by the

website.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getRecordKeyByReceivedDateRange>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_java_lang_String>[From Date]</arg2_java_lang_String>

 <arg3_java_lang_String>[To Date]</arg3_java_lang_String>

 </ser:getRecordKeyByReceivedDateRange>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [From Date]: the UTC date:time in MM/dd/yyyy HH:mm:ss format

- [To Date]: the UTC date:time in MM/dd/yyyy HH:mm:ss format

getRecordKeyByEditedDateRange: Return a list of the RecordKeys in a given

date range when the records are edited/updated.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getRecordKeyByEditedDateRange>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_java_lang_String>[From Date]</arg2_java_lang_String>

 <arg3_java_lang_String>[To Date]</arg3_java_lang_String>

 </ser:getRecordKeyByEditedDateRange>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [From Date]: the UTC date:time in MM/dd/yyyy HH:mm:ss format

- [To Date]: the UTC date:time in MM/dd/yyyy HH:mm:ss format

14 | A P I M e t h o d s

getRecordKeyByDateRange: Return a list of the RecordKeys in a given date

range.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getRecordKeyByDateRange>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_java_lang_String>[From Date]</arg2_java_lang_String>

 <arg3_java_lang_String>[To Date]</arg3_java_lang_String>

 </ser:getRecordKeyByDateRange>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [From Date]: the UTC date:time in MM/dd/yyyy HH:mm:ss format

- [To Date]: the UTC date:time in MM/dd/yyyy HH:mm:ss format

getDataByRecordKey4: Get the detail of a record with the specified RecordKey

in a specified format. This newest version of the getDataByRecordKey method

also returns the Time Zone for the record Date_Created (which is always

returned in UTC/GMT). Note that this method is subject to the Use Limits

described above.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getDataByRecordKey>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_java_lang_String>[RecordKey]</arg2_java_lang_String>

 <arg3_int>[ResponseFormat]</arg3_int>

 <arg4_int>[DatetimeFormat]</arg4_int>

 </ser:getDataByRecordKey>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [RecordKey]: The RecordKey which is extracted from the “@recordKey”

field returned by the “getRecordKeyByDateRange” method

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

- [DatetimeFormat]:

- + “0” : yyyy-MM-ddTHH:mm:ss (UTC/GMT)

- + “1” : MM/dd/yyyy HH:mm:ss (UTC/GMT)

submissionDispatch2: Submit a record to given WebService.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

A P I M e t h o d s | 15

 <ser:submissionDispatch2>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_java_lang_String>[recordsToSubmit]</arg2_java_lang_String>

 </ser:submissionDispatch2>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [recordsToSubmit]is a CSV data string including headers and

corresponding values concatenated by @END_LINE; For example:

"@mobileNumber","string_question","integer_question","decimal_questi

on","date_question","Time_question","Date_Time_question","select_mul

tiple_question","select_one_question","geopoint_question","barcode_q

uestion"@END_LINE;"0909707606","sent using wss to the mobile device

0909707606 #9","11","12.5","2012-07-06","23:59:59","2012-07-

21T23:59:59","option_a option_c","option_3","10.687 106.23 54

20","898777907";

The “@mobileNumber” is a system field. If this field is blank or

omitted, the submitted record will be set to “pending”. Otherwise,

this record will be automatically set to “sent” and delivered to the

mobile unit whose mobile number is set in this field.

listDispatch: Return a list of Records headers based On Status Flag, only

included RecordKey, and base header fields(MobileNumber, Date Completed, Date

Submitted).

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:listDispatch>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_int>[DispatchStatus]</arg2_int>

 <arg3_int>[ResponseFormat]</arg3_int>

 </ser:listDispatch>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [DispatchStatus]: 1=Pending, 2=Scheduled, 3=Sent, 4=Received,

5=Viewed, 6=Rejected, 7=Completed, 100=All

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

deleteDataByRecordKey: Delete records by the RecordKey

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:deleteDataByRecordKey>

 <arg0_java_lang_String>[RecordKeys]</arg0_java_lang_String>

16 | A P I M e t h o d s

 </ser:deleteDataByRecordKey>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [RecordKeys]: The list of the RecordKey separated by a comma (“,”).

The RecordKey which is extracted from the “@recordKey” field

returned by the “getRecordKeyByDateRange” method.

Return:

 true: the WS is valid

 false: the WS is invalid

deleteData: Delete records by the record Id

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:deleteData>

 <arg0_java_lang_String>[Record IDs]</arg0_java_lang_String>

 </ser:deleteData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [Record IDs] The list of the record ID separated by a comma (“,”).

Note that the record ID is the “Form_Record” field on the View Data

tab.

Return:

 0: Success

 -1: System Error

 -2: No record found

deleteDispatch: Deletes Dispatch records based on Ids

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:deleteDispatch>

 <arg0_java_lang_String>[WS ID]</arg0_java_lang_String>

 <arg1_java_lang_String>[Password]</arg1_java_lang_String>

 <arg2_java_lang_String>[RecordKeys]</arg2_java_lang_String>

 <arg3_int>[ResponseFormat]</arg3_int>

 </ser:deleteDispatch>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [RecordKeys]: the list of the RecordKey concatenated by a comma

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

http://schemas.xmlsoap.org/soap/envelope/

A P I M e t h o d s | 17

getLookupTableList: Return the Lookup Table list that includes only the

Lookup Table key, name, description and the column list.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getLookupTableList>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_int>[ResponseFormat]</arg3_int>

 </ser:getLookupTableList>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

An example of a reponse in CSV format

[<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Root version="1.0">

<StatusCode>200</StatusCode>

<ErrorMessage>Success</ErrorMessage>

<Data>

<error_message/>

<error_code/>

<Result><![CDATA[key, tableName, description, columnsName

aglteWRvZm9ybXNyFQsSDkxvb2t1cFRhYmxlTXN0GIIGDA,"DS1","Sample

1","STATION,STATION_NAME,ELEVATION,LATITUDE,LONGITUDE,DATE,HLY-CLDH-

NORMAL,Completeness Flag,HLY-HTDH-NORMAL,Completeness Flag"

aglteWRvZm9ybXNyFQsSDkxvb2t1cFRhYmxlTXN0GJEGDA,"DS2","Sample

2","STATION,STATION_NAME,ELEVATION,LATITUDE,LONGITUDE,DATE,HLY-CLDH-

NORMAL,Completeness Flag,HLY-HTDH-NORMAL,Completeness Flag"

</Data>

</Root>]

getLookupTableData: Get the content of a Lookup Table. Note that this method

is subject to the Use Limits described above.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getLookupTableData>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_java_lang_String>[LU KEY]</arg3_java_lang_String>

 <arg4_int>[OFFSET]</arg4_int>

 <arg5_int>[LIMIT]</arg5_int>

18 | A P I M e t h o d s

 <arg6_int>[ResponseFormat]</arg6_int>

 </ser:getLookupTableData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [LU KEY]: The Lookup Table key which returned by getLookupTableList

- [OFFSET]: The row position will be returned

- [LIMIT]: The number of rows will be returned

Note: return all rows if [LIMIT] is -1.

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

An example of a reponse in CSV format

[<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Root version="1.0">

<StatusCode>200</StatusCode>

<ErrorMessage>Success</ErrorMessage>

<Data>

<error_message/>

<error_code/>

<Result><![CDATA["STATION","STATION_NAME","ELEVATION","LATITUDE","LONGI

TUDE","DATE","HLY-CLDH-NORMAL","Completeness Flag","HLY-HTDH-

NORMAL","Completeness Flag"

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101 00:00","0","C","375","C"

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101 01:00","0","C","380","C"

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101

02:00","0","C","384","C"]]></Result>

</Data>

</Root>]

addLookupTableData: Add a new Lookup Table. Note that this method is subject

to the Use Limits described above.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:addLookupTableData>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_java_lang_String>[LU NAME]</arg3_java_lang_String>

 <arg4_java_lang_String>[DESCRIPTION]</arg4_java_lang_String>

 <arg5_java_lang_String>[DATA SOURCE]</arg5_java_lang_String>

 <arg6_int>[ResponseFormat]</arg6_int>

 </ser:addLookupTableData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

A P I M e t h o d s | 19

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [LU NAME]: The Lookup Table name

- [DESCRIPTION]: The Lookup Table description

- [DATA SOURCE]: The datasource in CSV format. The @END_LINE; is used

as a carriage return for each row and the first row is the header.

- For example:

"STATION","STATION_NAME","ELEVATION","LATITUDE","LONGITUDE","DATE","

HLY-CLDH-NORMAL","Completeness Flag","HLY-HTDH-NORMAL","Completeness

Flag"@END_LINE;

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101

00:00","0","C","375","C"@END_LINE;

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101 01:00","0","C","380","C"

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

updateLookupTableData: Update an existing Lookup Table. Note that this

method is subject to the Use Limits described above.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:updateLookupTableData>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_java_lang_String>[LU NAME]</arg3_java_lang_String>

 <arg4_java_lang_String>[DESCRIPTION]</arg4_java_lang_String>

 <arg5_java_lang_String>[LU KEY]</arg5_java_lang_String>

 <arg6_java_lang_String>[DATA SOURCE]</arg6_java_lang_String>

 <arg7_int>[ResponseFormat]</arg7_int>

 </ser:updateLookupTableData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [LU NAME]: The Lookup Table name

- [DESCRIPTION]: The Lookup Table description

- [LU KEY]: The Lookup Table key which returned by getLookupTableList

- [DATA SOURCE]: The datasource in CSV format. The @END_LINE; is used

as a carriage return for each row and the first row is the header.

Note: the number of fields in the new datasource must be same with

the current datasource.

For example:

"STATION","STATION_NAME","ELEVATION","LATITUDE","LONGITUDE","DATE","

HLY-CLDH-NORMAL","Completeness Flag","HLY-HTDH-NORMAL","Completeness

Flag"@END_LINE;

20 | A P I M e t h o d s

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101

00:00","0","C","375","C"@END_LINE;

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101 01:00","0","C","380","C"

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

appendLookupTableData: Append new rows to an existing Lookup Table. Note

that this method is subject to the Use Limits described above.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:appendLookupTableData>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_java_lang_String>[LU NAME]</arg3_java_lang_String>

 <arg4_java_lang_String>[DESCRIPTION]</arg4_java_lang_String>

 <arg5_java_lang_String>[LU KEY]</arg5_java_lang_String>

 <arg6_java_lang_String>[DATA SOURCE]</arg6_java_lang_String>

 <arg7_int>[ResponseFormat]</arg7_int>

 </ser:appendLookupTableData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [LU NAME]: The Lookup Table name

- [DESCRIPTION]: The Lookup Table description

- [LU KEY]: The Lookup Table key which returned by getLookupTableList

- [DATA SOURCE]: The datasource in CSV format. The @END_LINE; is used

as a carriage return for each row and the first row is the header.

Note: the number of fields in the new datasource must be same with

the current datasource.

For example:

"STATION","STATION_NAME","ELEVATION","LATITUDE","LONGITUDE","DATE","

HLY-CLDH-NORMAL","Completeness Flag","HLY-HTDH-NORMAL","Completeness

Flag"@END_LINE;

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101

00:00","0","C","375","C"@END_LINE;

"GHCND:USW00003947","KANSAS CITY INTERNATIONAL AIRPORT MO

US","306.3","39.2972","-94.7306","20100101 01:00","0","C","380","C"

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

A P I M e t h o d s | 21

deleteLookupTableData: Delete all rows of an existing Lookup Table.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:deleteLookupTableData>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_java_lang_String>[LU KEY]</arg3_java_lang_String>

 <arg4_int>[ResponseFormat]</arg4_int>

 </ser:deleteLookupTableData>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [LU KEY]: The Lookup Table key which returned by getLookupTableList

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON

[BETA – access via http://7.mydoforms.appspot.com/wss?wsdl]

getMobileUnits: Get a list of all the mobile units connected to an account

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getMobileUnits>

 <arg0_java_lang_String>>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>>[EMAIL]</arg1_java_lang_String>

 <arg2_java_lang_String>[PASSWORD]</</arg2_java_lang_String>

 <arg3_int>[ResponseFormat]</arg3_int>

 </ser:getMobileUnits>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

[ResponseFormat]: 1=CSV, 2=XML, 3=JSON

[BETA – access via http://7.mydoforms.appspot.com/wss?wsdl]

getGPSTrackingPoints: Get all the tracking points that are within a certain

date range (created and received on the mobile devices) for a specific mobile

unit.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ser="services.wss.portal.doforms.mdt.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ser:getGPSTrackingPoints>

 <arg0_java_lang_String>[ACCOUNT NAME]</arg0_java_lang_String>

 <arg1_java_lang_String>[EMAIL]</arg1_java_lang_String>

http://7.mydoforms.appspot.com/wss?wsdl
http://7.mydoforms.appspot.com/wss?wsdl

22 | A P I M e t h o d s

 <arg2_java_lang_String>[PASSWORD]</arg2_java_lang_String>

 <arg3_java_lang_String>[MOBILE KEY]</arg3_java_lang_String>

 <arg4_java_lang_String>["FROM" DATE]</arg4_java_lang_String>

 <arg5_java_lang_String>["TO" DATE]</arg5_java_lang_String>

 <arg6_int>[ResponseFormat]</arg6_int>

 </ser:getGPSTrackingPoints>

 </soapenv:Body>

</soapenv:Envelope>

Where:

- [ACCOUNT NAME]: your doForms account name

- [EMAIL]: The email address which used to login into mydoforms

- [PASSWORD]: The password which used to login into mydoforms

- [MOBILE KEY]: The mobile key which returned by the getMobileUnits

method

- ["FROM" DATE]: the date:time when the GPS values are created and

received on the mobile device

- ["FROM" DATE]: the date:time when the GPS values are created and

received on the mobile device

- [ResponseFormat]: 1=CSV, 2=XML, 3=JSON, 4=KML, 5=GPX

Depreciated Methods

Although deprecated methods remain in the API, their use is discouraged, and deprecation may indicate
that the feature will be removed in the future. Features are deprecated—rather than immediately
removed—in order to provide backward compatibility, and give programmers who have used the
feature enough time to bring their code into compliance with the new standard.

The following methods are depreciated:

getDataByRecordKey2

getDataByRecordKey3

C o n t a c t S u p p o r t | 23

Custom Development Services

Need programming services to help you with your integration?

Our software developers are experts at smartphone application development and related backends. If
you have used doForms, you know how good their applications are.. Now this expertise is at your
disposal for developing customized mobile business applications for your organization's specific needs.
Our software development services start at $65 per hour.

Contact us for a free consultation.

http://www.doforms.com/contact

